Jump to content
This Topic
fix

Des exos de Math pour le fun

Recommended Posts

Modeste contribution à ce thread (très bonne idée) ; il y a quelques temps je devais inventer des quizz si possibles inédits pour des candidats.
Je me souviens vraiment pas de tous mais en voilà quelques-uns souvent inspirés de situations réelles (en général d’activité enfants ...).
Possible qu’ils ressemblent à des quizz trouvables sur internet (forcément des similitudes), mais globalement ils doivent pas être trop documentés
A chaque fois, plusieurs manières possibles mais il y en toujours une qui ne soit pas trop calculatoire. Globalement assez orienté probas.

Ceux que je trouve plus durs sont vers la fin

 

** Alice et Bob jouent à la roulette russe avec un revolver à 6 coups et une seule balle. Bob est le premier à essayer.
Première version, le barillet n’est pas touché à chaque tentative (dont il avance juste de 1 logement à chaque fois). Quelle est la probabilité de Bob de gagner?Deuxième version, le barillet est tourné au pif préalablement à chaque tentative. Quelle est la probabilité de Bob de gagner?

** Alice et Bob ont 2 bébés, qui se réveillent chacun aléatoirement entre 7h et 8h (loi uniforme), et indépendamment l’un de l’autre.
Alice et Bob doivent évidemment se lever avec le plus matinal. A quelle heure se lève-t-ils en moyenne ?
Idem avec N bébés ?

** Avec un dé à 6 faces, combien faut-il faire de lancers en moyenne pour obtenir 2 fois 6 de suite?

** on prend 10 entiers a1,..,a10 entre 1 et 100 (éventuellement égaux).
Montrer qu on peut trouver 2 sous-ensembles différents de {a1,...,a10} différents qui ont même somme. (Par exemple a2+a8=a1+a4+a5+a6)

** Alice et Bob jouent avec la même pièce à un jeu : ils choisissent une séquence, lancent la pièce et notent le résultat, le premier qui a sa séquence qui apparaît a gagné.
Alice choisit « PP ». Quelles sont les probabilités de Bob de gagner suivant qu'il choisisse « FF », « PF » ou « FP »?

** Un singe tape à la machine à écrire. Il tape n'importe quoi au hasard. En moyenne qu’est ce qu'il va mettre moins de temps à obtenir sur la feuille, le mot "poker" ou le mot  "pokep" ?

** Bob a un escalier de 25 marches pour arriver chez lui. A chaque pas, il décide aléatoirement soit d’avancer à la prochaine marche, soit d'en sauter une et d avancer de 2 matches. Combien de manières différentes a Bob de monter son escalier ?

** Alice et Bob jouent au Monopoly avec 2 dés à 6 faces. La partie est très longue et les tours de plateaux s enchaînent.
Quelle est la probabilité qu’à la fin du 100eme tour de plateau, Bob arrive exactement sur la case Départ ? (On oublie les cartes Chances évidemment)

** Une fourmi marche sur les arêtes d’un cube en fer (disons 1m de côté). A chaque sommet rencontré elle choisit aléatoirement une des 3 arêtes (elle peut donc revenir sur ses pas) avec proba=1/3
En commençant à un sommet, combien de mètres en moyenne elle va parcourir avant de rallier le sommet opposé ? (Cf dessin)

Spoiler

 

image.png.f7c1890187125fcb4b8a50906cc5c1a2.png

 

 ** L’album panini de l’euro 21 compte 96 pages et 678 stickers différents à collectionner. Combien faut-il acheter de stickers en moyenne pour le remplir complètement ?

** Alice et Bob jouent au mistigri (ou roi noir, ou pouilleux : toutes les cartes forment 2 par 2 des paires sauf le mistigri qui n’a pas de jumeau, chaque paire formée est sortie du jeu, celui qui finit avec le mistigri a perdu). Alice a 20 cartes+le mistigri. Bob a les 20 cartes complémentaires de celles d’Alice. C’est à Bob de tirer une carte dans le jeu d’Alice. Quelle est la probabilité que Bob gagne la partie ?

 

 

Edited by dupire

Share this post


Link to post
Share on other sites
Il y a 1 heure, dupire a écrit :

** Alice et Bob jouent à la roulette russe avec un revolver à 6 coups et une seule balle. Bob est le premier à essayer.
Première version, le barillet n’est pas touché à chaque tentative (dont il avance juste de 1 logement à chaque fois). Quelle est la probabilité de Bob de gagner?Deuxième version, le barillet est tourné au pif préalablement à chaque tentative. Quelle est la probabilité de Bob de gagner?

Spoiler

Pour la première version, je dirais instinctivement 1/2. Et je retrouve ça par le calcul en calculant la proba qu'a Bob de perdre.

Il peut perdre aux premier, troisième et cinquième coup.

La proba de perdre au premier coup p1 = 1/6

La proba de perdre au troisième coup p2 = 5/6 * 4/5 * 1/4 = 1/6

La proba de perdre au cinquième coup p3 = 5/6 * 4/5 * 3/4 * 2/3 * 1/2 = 1/6

La proba totale de perdre pP = p1 + p2 + p3 = 1/2

Proba de win pG = 1 - pP = 1/2

 

Pour la seconde version... Même principe sauf que t'as pP = 1/6 + (5/6)^2 * 1/6 + (5/6)^4 * 1/6 + ... = 1/6 * ( 1 + (5/6)^2 + (5/6)^4 + ... ) 

Là je bloque un peu, en checkant sur le Internet, je trouve que 1+y+y^2+y^3+...=1/(1-y). J'ai envie de dire ( mais ai-je le droit ? ) que la somme que je cherche à calculer est la moitié de cette somme et que ça me ferait 3 et je retomberais sur la même proba de perte et donc de win que dans la première version.

 

Edited by Tuni

Share this post


Link to post
Share on other sites
il y a 16 minutes, Tuni a écrit :
  Masquer le contenu

 

Proba de win pG = 1 - pP = 1/2

Yep

Pour la seconde version... Même principe sauf que t'as pP = 1/6 + (5/6)^2 * 1/6 + (5/6)^4 * 1/6 + ... = 1/6 * ( 1 + (5/6)^2 + (5/6)^4 + ... ) 

Là je bloque un peu, en checkant sur le Internet, je trouve que 1+y+y^2+y^3+...=1/(1-y)   
 

Du coup t’y es en choisissant bien y !

 

 

 

Share this post


Link to post
Share on other sites

pour la 2ème solution des balles, je raisonne comme ça :

Spoiler

Proba de perdre de J1 = p

Si tu es à ta première tentative ou à ta 2ème (chacun ayant raté 1 fois), tu as la même proba de perdre, car tirage indépendants et suite infinie

donc p = 1/6 (perd au 1er coup) + 5/6 * 5/6 * p
soit 11 p / 36 = 1/6, donc p = 6 / 11 

 

 

Edited by Vingte

Share this post


Link to post
Share on other sites
il y a 1 minute, Vingte a écrit :

pour la 2ème solution des balles, je raisonne comme ça :

  Masquer le contenu

Proba de perdre de J1 = p

Si tu es à ta première tentative ou à ta 2ème (chacun ayant raté 1 fois), tu as la même proba de perdre, car tirage indépendants et suite infinie

donc p = 1/6 (perd au 1er coup) + 5/6 * 5/6 * p
soit 11 p / 36 = 1/6, donc p = 5 / 11 

 

Spoiler

 

yes bravo

pour ce genre de problèmes où le système est inchangé c'est souvent utile de conditionner par les premiers coups

on peut se aussi dire que soit Bob perd tout de suite, soit il passe le revolver et la situation est exactement inversée

donc p = 1/6 x 0 + 5/ 6 x (1-p)

mais bon c'est similaire à ce que tu dis

 

 

Share this post


Link to post
Share on other sites

Le problèmes des marches (je retourne bosser ensuite) :
 

Spoiler

1 marche : 1
2 marches : 2 (il saute ou passe par 1 marche)
n marches = situation à n-1 marches + situation à n-2 marches
-> Suite de Fibonnacci
121393 façons.

 

Share this post


Link to post
Share on other sites
Il y a 5 heures, dupire a écrit :

** Alice et Bob jouent à la roulette russe avec un revolver à 6 coups et une seule balle. Bob est le premier à essayer.
Première version, le barillet n’est pas touché à chaque tentative (dont il avance juste de 1 logement à chaque fois). Quelle est la probabilité de Bob de gagner?Deuxième version, le barillet est tourné au pif préalablement à chaque tentative. Quelle est la probabilité de Bob de gagner?

Spoiler

 

Pour la première version, Bob gagne si la balle est placé aux spot 1, 3 ou 5 et Alice gagne si la balle est placée sur les spots 2, 4 ou 6 donc 50/50. À noter que pour moi "gagner" ça veut dire trouver la balle donc "mourir" en fait. :)

Pour la deuxième version Bob a 5/6 de mourir de suite puis Alice est dans la situation initiale de Bob. Si "Pb" c'est la probabilité que Bob meurt et "Pa" c'est la probabilité que Alice meurt, on a ces 2 équations à 2 inconnues:

Pa = 5/6 Pb et Pb + Pa = 1.

Donc Pa = 5/11 et Pb = 6/11

 

Après ce premier exo, j'étais chaud et en confiance puis je me suis vite calmé lol…

Il y a 5 heures, dupire a écrit :

** Alice et Bob ont 2 bébés, qui se réveillent chacun aléatoirement entre 7h et 8h (loi uniforme), et indépendamment l’un de l’autre.
Alice et Bob doivent évidemment se lever avec le plus matinal. A quelle heure se lève-t-ils en moyenne ?
Idem avec N bébés ?

Aucune idée de comment faire,

Spoiler

Intuitivement je dirais 7h20 puis pour N Bébés on découpe l'heure en N+1 morceaux et on met un bébé à chaque point mais c'est sans doute plus compliqué que ça et surtout je sais pas le justifier. :)

 

Il y a 5 heures, dupire a écrit :

** Alice et Bob jouent avec la même pièce à un jeu : ils choisissent une séquence, lancent la pièce et notent le résultat, le premier qui a sa séquence qui apparaît a gagné.
Alice choisit « PP ». Quelles sont les probabilités de Bob de gagner suivant qu'il choisisse « FF », « PF » ou « FP »?

On notera que j'ai subtilement éviter 2 problèmes pour passer directement au #5. 

Spoiler

 

FF vs PP, c'est beaucoup trop symétrique pour que la réponse soit autre chose que 50%. :)

PP vs PF, tant que les F s'enchaînent, rien ne se passe et le jour où il y a un P qui tombe, c'est encore du 50/50 imo. 

PP vs FP, le jour où il y a un F, Bob est en Freeroll et finira par gagner donc Alice doit absolument enchaîner "PP" du premier coup, donc ça nous fait un 75/25

 

 

Il y a 5 heures, dupire a écrit :

** Un singe tape à la machine à écrire. Il tape n'importe quoi au hasard. En moyenne qu’est ce qu'il va mettre moins de temps à obtenir sur la feuille, le mot "poker" ou le mot  "pokep" ?

Spoiler

 

Je suis sûr qu'il y a une subtilité que j'ai pas vue mais pour moi, c'est la même que PP vs PF donc 50/50.

Il doit y avoir une couille en mode "si t'écris poker, il y a une petit probabilité pour que les 4 lettres précédentes soient "poke" et donc t'as déjà perdu. Mais en fait si tu viens d'écrire "poke" on est sur du 50/50 encore. T'es sûr que c'est pas la première lettre qui doit changer pour avoir autre chose qu'un 50/50? Genre "poker" contre "koker"?

 

Le problème de la fourmi, je suis sûr qu'il doit y avoir une solution élégante et facile mais je la trouve pas. :(

 

Share this post


Link to post
Share on other sites
il y a 22 minutes, 17 lièvres a écrit :
  Masquer le contenu

 

Pour la première version, Bob gagne si la balle est placé aux spot 1, 3 ou 5 et Alice gagne si la balle est placée sur les spots 2, 4 ou 6 donc 50/50. À noter que pour moi "gagner" ça veut dire trouver la balle donc "mourir" en fait. :)

Pour la deuxième version Bob a 5/6 de mourir de suite puis Alice est dans la situation initiale de Bob. Si "Pb" c'est la probabilité que Bob meurt et "Pa" c'est la probabilité que Alice meurt, on a ces 2 équations à 2 inconnues:

Pa = 5/6 Pb et Pb + Pa = 1.

Donc Pa = 5/11 et Pb = 6/11

 

Après ce premier exo, j'étais chaud et en confiance puis je me suis vite calmé lol…

Aucune idée de comment faire,

  Masquer le contenu

Intuitivement je dirais 7h20 puis pour N Bébés on découpe l'heure en N+1 morceaux et on met un bébé à chaque point mais c'est sans doute plus compliqué que ça et surtout je sais pas le justifier. :)

 

On notera que j'ai subtilement éviter 2 problèmes pour passer directement au #5. 

  Masquer le contenu

 

FF vs PP, c'est beaucoup trop symétrique pour que la réponse soit autre chose que 50%. :)

PP vs PF, tant que les F s'enchaînent, rien ne se passe et le jour où il y a un P qui tombe, c'est encore du 50/50 imo. 

PP vs FP, le jour où il y a un F, Bob est en Freeroll et finira par gagner donc Alice doit absolument enchaîner "PP" du premier coup, donc ça nous fait un 75/25

 

 

  Masquer le contenu

 

Je suis sûr qu'il y a une subtilité que j'ai pas vue mais pour moi, c'est la même que PP vs PF donc 50/50.

Il doit y avoir une couille en mode "si t'écris poker, il y a une petit probabilité pour que les 4 lettres précédentes soient "poke" et donc t'as déjà perdu. Mais en fait si tu viens d'écrire "poke" on est sur du 50/50 encore. T'es sûr que c'est pas la première lettre qui doit changer pour avoir autre chose qu'un 50/50? Genre "poker" contre "koker"?

 

 

Le problème de la fourmi, je suis sûr qu'il doit y avoir une solution élégante et facile mais je la trouve pas. :(

 

Les bébés : 

Spoiler

 

Ben t'as la bonne intuition :) 

A la réflexion c'est la seule question qui nécessite des connaissances "scolaires" donc peut être un peu casse gonades pour ce thread 

Mais grosso modo pour finir proprement il faut trouver la loi de U = Min(U1,U2,..,Un) où U1..Un sont des variables uniformes indépendantes et ensuite c'est assez rapide

 

 

Indice machine à écrire :

Spoiler

on lance une pièce et on note les résultats successifs.
est ce qu'il faut plus de lancers en moyenne pour obtenir PP ou PF ?   PPP ou PPF ?


Indice fourmi :

Spoiler


le cas d'un tétraèdre est peut être plus facile. On lâche la fourmi sur un des sommets "au sol". combien de mètres elle fait en moyenne pour atteindre le sommet "en haut" ?

image.png.6baf32446a06dfe6d083dcba5a1ee89d.png

 

 

 

 

 

Share this post


Link to post
Share on other sites
Citation

** Alice et Bob ont 2 bébés, qui se réveillent chacun aléatoirement entre 7h et 8h (loi uniforme), et indépendamment l’un de l’autre.
Alice et Bob doivent évidemment se lever avec le plus matinal. A quelle heure se lève-t-ils en moyenne ?
Idem avec N bébés ?

Pour les bebe, j'ai fais un graph sur paint qui aide a la resolution. Attention ca ressemble a du joueur:

Spoiler

image.png.924a3e744135a1da592a7dcb551a9f16.png

X: lheure de leve du bebe 1, Y: l'heure du bebe 2 et les ligne en rouge sombre c'est en gros des lignes comme sur une carte avec les atitudes ou chaque ligne represente un horaire de levee

Si je trouve la ligne ou le coin en haut a droite reppresente exactement la moitie de l'aire du carre, je me dis que c'est la moyenne (s je prend un point au hasard dans le carre y a 50% de chance d'etre au dessus et 50% en dessous)

 

et donc c'est un carre de longeur x tel que x*x=1/2 => x=0.70 et ca nous donne lever moyen a 7h17et 34 s

 

 

Genial exercice !

Edited by fix

Share this post


Link to post
Share on other sites
Citation

** Alice et Bob jouent au Monopoly avec 2 dés à 6 faces. La partie est très longue et les tours de plateaux s enchaînent.
Quelle est la probabilité qu’à la fin du 100eme tour de plateau, Bob arrive exactement sur la case Départ ? (On oublie les cartes Chances évidemment)

Je pense que je rate un truc et je commence mal. Je vois le probleme comme une somme de loi uniforme mais du coup ca mene a rien, ca rend les choses trop compliquees. Faut surement prendre le probleme sous un autre angle

Share this post


Link to post
Share on other sites
il y a 11 minutes, fix a écrit :

Je pense que je rate un truc et je commence mal. Je vois le probleme comme une somme de loi uniforme mais du coup ca mene a rien, ca rend les choses trop compliquees. Faut surement prendre le probleme sous un autre angle

Spoiler

 

Avec un dé à 6 faces (ou 2 faces ..) c est un peu plus facile « pour voir »

Je connais pas toutes les résolutions, mais c est pas très calculatoire a priori 

et surtout le résultat saute aux yeux une fois trouvé c est ce qui rend le quizz sympa 

 

 

Share this post


Link to post
Share on other sites

J'ai rien compris à ton graphe @fix, ce qui te fait effectivement un point en commun avec jou0eur. Le bébé 2 c'est celui qui se lève en 2ème ou on le définit avant qu'ils se lèvent en prenant par exemple celui qu'on aime le moins? Et pourquoi t'as des carrés et pas des rectangles?

 

Edit: Dans ma tête si je reprends ton graphe, je vois pas des lignes mais plutôt un nuage de points au-dessus de la bissectrice (parce que pour moi le 2ème bébé, c'est le lève tard). On a donc un triangle (la moitié du carré en haut à gauche de la diagonale) et j'essaie de trouver l'absisse du centre de gravité de ce triangle^^

Edited by 17 lièvres

Share this post


Link to post
Share on other sites
Citation

(parce que pour moi le 2ème bébé, c'est le lève tard). 

Surtout pas faire ca !

Mon graph en quelques mots (j'ai pas de stylo a dispo!):

Spoiler

 

Le carre represente tous les etats possibles du probleme:

- En vertical de 7h a 8h les horaires du bb1

- En horizontal de 7h a 8h toutes les horaires du bb2

2 proprites importantes sur ce graph:

- Tous les points du graph sont equiprobable (contrairement a ton graph ou une dimension depend de l'horaire du bb2)

- Si je dessine un carre en haut a droite dont le coin en bas a gauche est le point (7 h x,7 h x), ce sont tous les etats qui necessitent un reveil du parent apres 7 h x.

 

Bilan: si je trouve un carre qui est d'une aire egale a 50% du carre des etats possible, alors la largeur du carre me donne l'heure a laquel 50% des reveils sont plus tard => C'est l'heure du reveil moyen 

 

 

 

 

 

 

 

Edited by fix

Share this post


Link to post
Share on other sites
il y a 2 minutes, fix a écrit :

Surtout pas faire ca !

Mon graph en quelques mots (j'ai pas de stylo a dispo!):

  Masquer le contenu

 

Le carre represente tous les etats possibles du probleme:

- En vertical de 7h a 8h les horaires du bb1

- En horizontal de 7h a 8h toutes les horaires du bb1

2 proprites importantes sur ce graph:

- Tous les points du graph sont equiprobable (contrairement a ton graph ou une dimension depend de l'horaire du bb2)

- Si je dessine un carre en haut a droite dont le coin en bas a gauche est le point (7 h x,7 h x), ce sont tous les etats qui necessitent un reveil du parent apres 7 h x.

 

Bilan: si je trouve un carre qui est d'une aire egale a 50% du carre des etats possible, alors la largeur du carre me donne l'heure a laquel 50% des reveils sont plus tard => C'est l'heure du reveil moyen 

 

 

 

 

 

 

 

 

Spoiler

Du coup en généralisant à n bébés, l'heure moyen de reveil c'est 8h - racine enieme de (1/2) * 60 minutes ? 

 

Edited by Tuni

Share this post


Link to post
Share on other sites
Il y a 3 heures, fix a écrit :

Pour les bebe, j'ai fais un graph sur paint qui aide a la resolution. Attention ca ressemble a du joueur:

  Révéler le texte masqué

image.png.924a3e744135a1da592a7dcb551a9f16.png

X: lheure de leve du bebe 1, Y: l'heure du bebe 2 et les ligne en rouge sombre c'est en gros des lignes comme sur une carte avec les atitudes ou chaque ligne represente un horaire de levee

Si je trouve la ligne ou le coin en haut a droite reppresente exactement la moitie de l'aire du carre, je me dis que c'est la moyenne (s je prend un point au hasard dans le carre y a 50% de chance d'etre au dessus et 50% en dessous)

 

et donc c'est un carre de longeur x tel que x*x=1/2 => x=0.70 et ca nous donne lever moyen a 7h17et 34 s

 

 

Genial exercice !

Spoiler

 

Je pense voir l idée mais j ai l impression sauf erreur qu il y a une partie où on se réveille pas avec le 1er 

Est ce que dans ton idée la solution serait pas plutôt de trouver la hauteur moyenne de cette surface ? (Les axes c est de 0 à 1 partout, la flemme)

et donc de passer par les centres de gravité d un des triangles par ex, ce qui te donnerait effectivement le résultat 


0D84181D-72BB-408C-A2A2-8D4810BCAF01.thumb.jpeg.ee0b77550a83b896667d091179d31e7f.jpeg

 

 

Edited by dupire

Share this post


Link to post
Share on other sites

Le truc du Monopoly, il faut considérer la carte aller en prison ? 
Il me semble que dans la vraie vie, c'est complexe, car on va en prison et du coup les probas des cases ne sont pas les mêmes.
sinon en lisant le spoiler, on devrait arriver à 

Spoiler

1/7, car en moyenne on avance de 7 cases, donc 1 chance sur 7 de tomber pile sur la carte départ

 

Share this post


Link to post
Share on other sites

Typiquement le genre de thread limite  déprimant pour les gens de mon espèce. 

Rien que la roulette russe je ne comprends pas que Bob n'ait pas 5 chances sur 6 de vivre donc les n bébés qui sont des nuages de points racine de Pythagore c'est la PLS directe.

Share this post


Link to post
Share on other sites
Il y a 7 heures, fix a écrit :

Bilan: si je trouve un carre qui est d'une aire egale a 50% du carre des etats possible, alors la largeur du carre me donne l'heure a laquel 50% des reveils sont plus tard => C'est l'heure du reveil moyen 

C'est plutôt la définition de l'heure du réveil médian et je ne suis pas sûr qu'ici ça soit la même chose que l'heure du réveil moyen.

Du coup je me permets de raise avec un nouveau carré où cette fois-ci on place toujours le lève tard en ordonné.

1ovq.png 

Toutes les possibilités sont dans le triangle vert et l'heure de levé des parents se lit en absisse quand le bébé lève-tôt se réveille. Du coup, la "moyenne" de tous ces points verts c'est le centre de gravité du triangle vert et google me confirme que c'est le croisement des 3 médianes et que ces 3 médianes se coupent au tiers de leur longueur. Le tiers de la médiane dessinée en bleu a bien une absisse de 7h20.

il y a 41 minutes, FMK a écrit :

Rien que la roulette russe je ne comprends pas que Bob n'ait pas 5 chances sur 6 de vivre donc les n bébés qui sont des nuages de points racine de Pythagore c'est la PLS directe.

Il a 5 chances sur 6 de survivre sur le premier coup de feu mais on continue de jouer jusqu'à ce que quelqu'un meurt donc il est beaucoup moins serein que ça. :)

Share this post


Link to post
Share on other sites
Il y a 9 heures, Vingte a écrit :

Le truc du Monopoly, il faut considérer la carte aller en prison ? 
Il me semble que dans la vraie vie, c'est complexe, car on va en prison et du coup les probas des cases ne sont pas les mêmes.
sinon en lisant le spoiler, on devrait arriver à 

  Révéler le texte masqué

1/7, car en moyenne on avance de 7 cases, donc 1 chance sur 7 de tomber pile sur la carte départ

 

Oui pardon on enlève tous les trucs bizarres (les cartes, aller en prison etc). Donc c est comme si on avait une frise droite infinie de cases, et qu on voulait la probabilité de tomber sur la 88 888 eme case en avançant avec 2 dés (ou 1 dé etc).
yes pour le guess

 

Il y a 4 heures, FMK a écrit :

Typiquement le genre de thread limite  déprimant pour les gens de mon espèce. 

faut garder à l esprit que c est pas des problèmes faciles, il faut du temps et des coups de pouce en général 

 

PS : si qqu'un a un petit quizz en attendant, à vot' bon coeur

Edited by dupire

Share this post


Link to post
Share on other sites
Il y a 6 heures, FMK a écrit :

Typiquement le genre de thread limite  déprimant pour les gens de mon espèce. 

Rien que la roulette russe je ne comprends pas que Bob n'ait pas 5 chances sur 6 de vivre donc les n bébés qui sont des nuages de points racine de Pythagore c'est la PLS directe.

Roulette russe, 2 joueurs, et tu joues jusqu'à ce qu'un des 2 perde

Share this post


Link to post
Share on other sites
Il y a 3 heures, dupire a écrit :

 

PS : si qqu'un a un petit quizz en attendant, à vot' bon coeur

** 2 personnes se donnent rendez vous a l’entrée du cercle barrière entre 7h et 8h. Chacun arrivent au cercle aléatoirement entre 7h et 8h (loi uniforme) et décident d’attendre l’autre 15 minutes avant de partir. Quelle est la proba que les 2 se voient ?

(par exemple si un arrive à 7h10 et l’autre a 7h20 : c ok / si l’un arrive à 7h30 et l’autre 7h50 : c ko)

 

@dupire 1 petit exo

Share this post


Link to post
Share on other sites
Le 29/09/2021 à 11:25, dupire a écrit :

** Alice et Bob jouent à la roulette russe avec un revolver à 6 coups et une seule balle. Bob est le premier à essayer.
Première version, le barillet n’est pas touché à chaque tentative (dont il avance juste de 1 logement à chaque fois). Quelle est la probabilité de Bob de gagner?Deuxième version, le barillet est tourné au pif préalablement à chaque tentative. Quelle est la probabilité de Bob de gagner?

Spoiler

V1 en faisant le bourrin avec l'arbre des possibles complet je trouve 50%.

V2, même méthode avec l'arbre des possibles qui cette fois donne une formule incluant une série géométrique de raison (5/6)² et une proba de perte de 6/11 qui semble plutôt intuitive étant donné que le fait de commencer est un désavantage certain comparé à la V1. Ca m'aura permis de réviser les séries géométriques même si je suis assez convaincu qu'il y a beaucoup plus élégant comme méthode ...

 

Edited by fritzlm

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Recently Browsing   0 members

    No registered users viewing this page.

English
Retour en haut de page
×
Unibet : French Poker Cup
Unibet : French Poker Cup