OTTO73 OTTO73 (Winamax.fr) CPiste Holothurisme : +8 % 12 posts Posted March 27, 2018 Bonjour les gens !! Je voulais savoir quelles étaient mes chances d'avoir cette rencontre : Nous sommes une table de 7, personne ne rentre, et donc bataille de blind... Mon Adversaire a 56 off SB et fait 2.5 X la BB Moi A5 off BB, je call. FLOP = 2 3 4 raimbow... la suite est sans intérêt, j'y ai laissé mon tapis... Donc, ma question multiple est : Combien de chance ai-je de flopper une quinte ? et combien de (mal)chance ai-je d'avoir face a une quinte supp.. ?? Grand merci pour vos reponse Oliv' 0 Share this post Link to post Share on other sites
jplenantais CPiste Holothurisme : +100 % 428 posts Posted March 27, 2018 (edited) Je suis complètement rouillé mais je tente : Ta proba de flopper une quinte, c'est la proba qu'il y ait un flop 234, c'est le seul flop qui te fait gagner. Des flops 234, y en a 1320 (12*11*10). Des flops possibles, y en a 52*51*50=132600 Donc la proba d'un flop 234, c'est 1320/132600 = 0,995% soit une chance sur 100 plus ou moins. La proba qu'il ait 65 une fois que le flop est sorti, ça dépend des mains qu'il open, on va admettre qu'il open 100% c'est plus facile Il reste 47 cartes dont trois 5 et quatre 6. Y a 47*46=2162 mains qu'il open, dont 7*6=42 mains qui font quinte supp. La proba est donc 42/2162 = 1,9% soit une chance sur 50. Pas 100% sûr de ma réponse, des sharks viendront confirmer / infirmer Edited March 27, 2018 by jplenantais 0 Share this post Link to post Share on other sites
taamer Quand ça change, ça change. Faut jamais se laisser démonter. CPiste Holothurisme : +101 % 7144 posts Posted March 27, 2018 il y a 54 minutes, jplenantais a écrit : Je suis complètement rouillé mais je tente : Ta proba de flopper une quinte, c'est la proba qu'il y ait un flop 234, c'est le seul flop qui te fait gagner. Des flops 234, y en a 1320 (12*11*10). Des flops possibles, y en a 52*51*50=132600 Donc la proba d'un flop 234, c'est 1320/132600 = 0,995% soit une chance sur 100 plus ou moins. La proba qu'il ait 65 une fois que le flop est sorti, ça dépend des mains qu'il open, on va admettre qu'il open 100% c'est plus facile Il reste 47 cartes dont trois 5 et quatre 6. Y a 47*46=2162 mains qu'il open, dont 7*6=42 mains qui font quinte supp. La proba est donc 42/2162 = 1,9% soit une chance sur 50. Pas 100% sûr de ma réponse, des sharks viendront confirmer / infirmer Grüt? - Le décompte des flops 234 est erroné : tu as compté des mains qui ne devraient pas y être (222, 223, 224, 333, 334). Par ailleurs, tu as compté des flops plusieurs fois (par exemple, le même flop est compté six fois (cinq de trop : ; ; etc.). - Pour la même raison (erreur de raisonnement et de formule), le décompte des flops n'est pas bon non plus. Il y a 22100 flops possibles pour un spectateur extérieur (je choisis trois cartes parmi 52); et il y a 19600 flops possibles pour un joueur assis à la table qui connaît les deux cartes qu'il a en main (je choisis trois cartes parmi 50). Voilà, un peu de dégrippant pour t'aider à te dérouiller les dénombrements. 0 Share this post Link to post Share on other sites
jplenantais CPiste Holothurisme : +100 % 428 posts Posted March 27, 2018 Ouille, merci @taamer Try again : Des flops 234, il y en a tout simplement 4*4*4 = 64. Des flops possibles, comme annoncé, il y en a 3 parmi 50 = 19600 D'où une proba de 64/19600=0,32% soit 1 chance sur 306 environ. J'espère que c'est mieux 0 Share this post Link to post Share on other sites
OTTO73 OTTO73 (Winamax.fr) CPiste Holothurisme : +8 % 12 posts Posted March 27, 2018 Merci Merci ;)) en bref je 'nai pas eu de chance... Merci pour vos calculs et, heureux d'avoir aidé a dégripper ++ 0 Share this post Link to post Share on other sites
Rockandroll . . . CPiste Holothurisme : +66 % 2806 posts Posted March 28, 2018 Il y a 14 heures, jplenantais a écrit : Ouille, merci @taamer Try again : c'est presque tout faux .... Des flops 234, il y en a tout simplement 4*4*4 = 64. 12 ( les 2,3 ou 4 ) * 8 ( ex : les 2 ou 3 si 1ere carte = 4 ) * 4 ( ex : les 2 si 1ere carte = 4 et 2eme carte = 3 ) = 384 Des flops possibles, comme annoncé, il y en a 3 parmi 50 = 19600 presque ... tu as fait 50*49*8 au lieu de 50*49*48 = 117600 D'où une proba de 64/19600=0,32% soit 1 chance sur 306 environ. 384 / 117600 = 0,0033 = 0,33% là tu as de la chance car dans ton décompte des flops 234 tu te trompes d'un facteur 6 ( 3 * 2 ) et sur le décompte des flops possibles tu te trompes aussi d'un facteur 6 ( 48/8 ) J'espère que c'est mieux j'espère que je ne me suis pas trompé -1 Share this post Link to post Share on other sites
taamer Quand ça change, ça change. Faut jamais se laisser démonter. CPiste Holothurisme : +101 % 7144 posts Posted March 28, 2018 Il y a 2 heures, Rockandroll a écrit : Try again : c'est presque tout faux .... -- 12 ( les 2,3 ou 4 ) * 8 ( ex : les 2 ou 3 si 1ere carte = 4 ) * 4 ( ex : les 2 si 1ere carte = 4 et 2eme carte = 3 ) = 384 -- presque ... tu as fait 50*49*8 au lieu de 50*49*48 = 117600 -- 384 / 117600 = 0,0033 = 0,33% là tu as de la chance car dans ton décompte des flops 234 tu te trompes d'un facteur 6 ( 3 * 2 ) et sur le décompte des flops possibles tu te trompes aussi d'un facteur 6 ( 48/8 ) -- j'espère que je ne me suis pas trompé Si, justement, tu t'es trompé - et comble d'ironie, tu attribues à jplenantais tes propres erreurs. Il y a bien un facteur 6 qui est deux fois en trop chez toi : tu comptes cinq fois de trop les flops avec un Quatre un Trois et un Deux, par exemple ( , , , , ). Et de la même manière, tu comptes cinq fois de trop les flops. Comme tu l'as remarqué, lorsqu'on fait le ratio des deux résultats, "l'erreur du facteur six" disparaît; mais en l'occurrence, c'est toi qui as de la chance et non jplenantais. Pour aller plus loin : comprendre comment on calcule un nombre d'arrangements (=les choix de trois chevaux du tiercé arrivés premier, deuxième et troisième parmi 52 chevaux) : https://fr.wikipedia.org/wiki/Arrangement comprendre comment on calcule un nombre de combinaisons (=les choix de trois cartes arrivées dans n'importe quel ordre pour constituer un flop) : https://fr.wikipedia.org/wiki/Combinaison_(mathématiques) Bonne lecture :-) 1 Share this post Link to post Share on other sites
Rockandroll . . . CPiste Holothurisme : +66 % 2806 posts Posted March 28, 2018 (edited) @Taamer je comprends ce que tu veux dire mais , je calcule le nombre d'arrangements pour le décompte des flops 234 et également le nombre d'arrangement pour le décompte des flops possibles donc mon résultat me semble homogène/cohérent Par contre j'ai du mal à comprendre que 4*4*4 soit le comptage flop 234 en combinaison ! Edited March 28, 2018 by Rockandroll 0 Share this post Link to post Share on other sites
taamer Quand ça change, ça change. Faut jamais se laisser démonter. CPiste Holothurisme : +101 % 7144 posts Posted March 28, 2018 Il y a 4 heures, Rockandroll a écrit : je calcule le nombre d'arrangements pour le décompte des flops 234 et également le nombre d'arrangement pour le décompte des flops possibles donc mon résultat me semble homogène/cohérent Par contre j'ai du mal à comprendre que 4*4*4 soit le comptage flop 234 en combinaison ! Le nombre de permutations d'un ensemble à trois éléments (les trois cartes du flop) est de factorielle 3, qu'on écrit aussi 3!, dont la valeur vaut 3x2x1, ou 6. Le nombre d'arrangements est égal au nombre de combinaisons multiplié par le nombre de permutations. Ton calcul trouve 12 x 8 x 4 arrangements, jplenantais trouve 4x4x4 combinaisons. Oh, (12 x 8 x 4) = (4 x 4 x 4) x 6. Vous raisonnez de manière identique, l'un considère que toutes les permutations représentent le même flop (ce qui est mon avis, et celui de jplenantais), l'autre considère que toutes les permutations apparaissent un nombre identique de fois (ce qui est ton avis), c'est à dire 6. Je te laisse retrouver le raisonnement qui mène à 4x4x4, ça devrait te venir facilement. 1 Share this post Link to post Share on other sites
Rockandroll . . . CPiste Holothurisme : +66 % 2806 posts Posted April 1, 2018 Le 28/03/2018 à 22:05, taamer a écrit : Je te laisse retrouver le raisonnement qui mène à 4x4x4, ça devrait te venir facilement. Bah je ne vois pas ! 0 Share this post Link to post Share on other sites